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We study tunneling conductance in ferromagnetic semiconductor/insulator/s-wave superconductor junction
where Rashba spin-orbit interaction �RSOI� and exchange field are taken into account in the ferromagnetic
semiconductor. We show that normalized conductance at zero voltage has a maximum as a function of RSOI
for high-transparent interface and finite exchange field. This is because Andreev reflection probability shows a
nonmonotonic dependence on RSOI in the presence of the exchange field. On the other hand, for intermediate
transparent interface, normalized conductance at zero voltage has a reentrant shape at zero or small exchange
field with increasing RSOI but is monotonically increasing by RSOI at large exchange field.
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I. INTRODUCTION

Spintronics aims to utilize not only charge but also spin
degree of freedom of electrons in electronic devices and
circuits.1–6 Electrical spin injection in normal metal is usu-
ally achieved by driving a current through ferromagnet/
normal metal junction. Recently, spin orbit interaction �SOI�
in metal and semiconductors has attracted significant atten-
tion in the field of spintronics, since it allows for electrical
control of spin without the use of ferromagnets or a magnetic
field. Much attention has been paid to the study of the effect
of Rashba spin-orbit interaction �RSOI�7 on transport prop-
erties of two-dimensional electron gas �2DEG�8–17 because it
offers the opportunity of controlling the RSOI and hence
spin transport by an external electric field.10–15,18–23 The pio-
neering work by Datta and Das suggested the way to control
the precession of the spins of electrons by the RSOI7 in
F/2DEG/F junction �F: ferromagnet�.24 This spin-orbit cou-
pling depends on the applied electric field and can be tuned
by a gate voltage.

There is an attempt to study spintronics in superconduct-
ing junction.25–28 Charge transports in two dimensional elec-
tron gas/s-wave superconductor junction with the RSOI has
been studied in Ref. 25. It is clarified that for low insulating
barrier the tunneling conductance is suppressed by the RSOI
while for high-insulating barrier it is almost independent of
the RSOI. It is also found that the re-entrant behavior of the
conductance appears at zero voltage as a function of RSOI
for intermediate insulating barrier strength. On the other
hand, spin dependent transport in ferromagnet/s-wave super-
conductor �F/S� junction is also an important subject in the
field of spintronics.29,30 Charge transport in F/S junction also

has been studied so far.31 The Andreev reflection �AR� in this
junction is suppressed because the retroreflectivity is broken
by the exchange field in the F layer.32 As a result, the con-
ductance of the junction is suppressed. However, the inter-
play between RSOI and exchange field33 in superconducting
junction still remains unexplored.34

In this paper, we study charge transport in ferromagnetic
semiconductor/spin-singlet s-wave superconductor junction,
taking into account the RSOI and the exchange field
simultaneously35,36 and calculate conductance by the chang-
ing RSOI, the exchange field and the height of insulator at
the interface. We show that normalized conductance at zero
voltage has a maximum as a function of RSOI for high-
transparent interface and finite exchange field. This is be-
cause AR probability shows a nonmonotonic dependence on
RSOI in the presence of the exchange field. On the other
hand, for intermediate transparent interface, normalized con-
ductance at zero voltage has a re-entrant shape at zero or
small exchange field with increasing RSOI but is monotoni-
cally increasing by RSOI at large exchange field.

II. FORMULATION

We consider ballistic ferromagnetic semiconductor/
insulator/spin-singlet s-wave superconductor �FS/S� junction
where the FS/S interface is located at x=0 �along y axis�, and
has infinitely narrow insulating barrier described by the �
function U��x�, where ferromagnetic semiconductor is mod-
eled as a 2DEG with vertical magnetization.

The effective Hamiltonian including both RSOI and ex-
change field in spin and Nambu space is given by

H =�
�k + U��x� − H��− x� i�k−��− x� 0 ���x�

− i�k+��− x� �k + U��x� + H��− x� − ���x� 0

0 − ���x� − �k − U��x� + H��− x� − i�k+��− x�
���x� 0 i�k−��− x� − �k − U��x� − H��− x�

� , �1�
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with k�=kx� iky, the energy gap �, �k= 	2

2m �k2−kF
2�,

the Fermi wave number kF, the exchange field H, the
Rashba coupling constant �, and the step function ��x�.
The energy spectrum of the ferromagnetic semiconductor is

given by E1=�k+�H2+ ��k�2 and E2=�k−�H2+ ��k�2 �see
Fig. 1�.

As shown in Fig. 2, the wave function 
�x� for x�0 �FS
side� is represented using eigenfunctions of the Hamiltonian:


�x � 0� = eikyy� 1
�2

eik1�2� cos �1�2�x�1�2��i
�k1�2�−

H + �− ����k1�2��2 + H2

1

0

0
� +

a1�2�

�2
eik1 cos �1x�1�

0

0

i
�k1+

H + ���k1�2 + H2

1
�

+
b1�2�

�2
eik2 cos �2x�2�

0

0

i
�k2+

H − ���k2�2 + H2

1
� +

c1�2�

�2
e−ik1 cos �1x�1�− i

�k1+

H + ���k1�2 + H2

1

0

0
�

+
d1�2�

�2
e−ik2 cos �2x�2�− i

�k2+

H − ���k2�2 + H2

1

0

0
�� , �2�

for an injection wave with wave number k1�2� where

k1�2�=�2� m�

	2 �2+kF
2 + �−���2� m�

	2 �2+kF
2	2+ � 2mH

	2 �2−kF
4 , and

k1�2��=k1�2�e
�i�1�2�. a1�2� and b1�2� are AR coefficients.

c1�2� and d1�2� are normal reflection coefficients. �1�2�

is the angle of the wave number k1�2� with respect to

the interface normal, and �1�2�=�1+ �−� H
���k1�2��2+H2 .
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FIG. 1. �Color online� The energy spectrum of the ferromagnetic
semiconductor �
=0.5, �=0.1� E1= 	2

2mk2+�H2+ ��k�2 and
E2= 	2

2mk2−�H2+ ��k�2. EF is Fermi energy and kF is Fermi wave
number.

FIG. 2. �Color online� Schematic illustration of scattering pro-
cesses. �1�2� is the angle of the wave number k1�2� with respect to
the interface normal. � denotes the direction of motions of quasi-
particles in the S measured from the interface normal.
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Similarly, for x�0 �s-wave superconductor side�, 
�x� is
given by


�x � 0� = eikyy�e1�2�e
ikF cos �x�

u

0

0

v
� + f1�2�e

ikF cos �x�
0

u

− v

0
�

+ g1�2�e
−ikF cos �x�

v

0

0

u
� + h1�2�e

−ikF cos �x�
0

− v

u

0
�� , �3�

with u=�1

2
�1+

�E2−�2

E
� , v=�1

2
�1−

�E2−�2

E
� where E is qua-

siparticle energy and � is an angle of the wave with wave
number kF with respect to the interface normal.
e1�2� , f1�2� ,g1�2� and h1�2� are transmission coefficients. Note

that since the translational symmetry holds for the y direc-
tion, the momenta parallel to the interface are conserved:
ky =kF sin �=k1 sin �1=k2 sin �2, where � denotes the direc-
tion of motions of quasiparticles in the S measured from the
interface normal.

The wave function follows the boundary conditions,25,37


�x�
x=+0 = 
�x�
x=−0,

vx
�x�
x=+0 − vx
�x�
x=−0 =
	

mi

2mU

	2 �3
�0� ,

�3 =�
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1
� , �4�

where velocity operator vx in the x-direction is given by37

vx =
�H

	 � kx
=�

	

mi

�

�x

i�

	
��− x� 0 0

−
i�

	
��− x�

	

mi

�

�x
0 0

0 0 −
	

mi

�

�x
−

i�

	
��− x�

0 0
i�

	
��− x� −

	

mi

�

�x

� . �5�

According to Ref. 25, we derive a formula for the tunneling conductance, and obtain the dimensionless conductance
represented in the form

�S = N1�
−�C

�C
1
2 �X + 
a1
2X + 
b1
2Y�21 − 
c1
2X − 
d1
2Y�21
cos �d�

+ N2�
−�/2

�/2

Re 1
2 �Y + 
a2
2X�12 + 
b2
2Y − 
c2
2X�12 − 
d2
2Y
cos �d�

= �
−�C

�C �1 + 
a1
2 + 
b1
2
Y

X
�21 − 
c1
2 − 
d1
2

Y

X
�21�cos �d� + �

−�/2

�/2

Re�1 + 
a2
2
X

Y
�12 + 
b2
2 − 
c2
2

X

Y
�12 − 
d2
2�cos �d�

�6�

��1 + A1 + B1 − C1 − D1
�
−�C

�C

cos �d� + 2�1 + A2 + B2 − C2 − D2� �7�

��S1 + �S2, �8�

where we define X=2�1+ m�2

	2���k1�2+H2 � and Y =2�1− m�2

	2���k2�2+H2 �. A1, A2, B1, and B2 denote the angular averaged Andreev

reflection probability, while C1, C2, D1, and D2 are the angular averaged normal reflection probability �Thus, they are not
function of ��. In the above, N1 and N2 are defined as the densities of states normalized by those with �=0 and H=0 for wave
numbers k1 and k2, respectively:
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N1�2� =
1

1 + �− �
m�2

	2�H2 + ��k1�2��2

. �9�

�12 and �21 are defined as the following:

�12 =
k1 cos �1

k2 cos �2
, �21 =

k2 cos �2

k1 cos �1
. �10�

The critical angle �c is defined as cos �c=�1− �
k1

kF
�2. �N is

given by the conductance for normal states, i.e., �s for
�=0. We define the normalized conductance as �T=

�S

�N�
=0�

�or
�S

�N��=0� � as a function of 
 �or �� and the parameters as


= 2m�

	2kF
, �= 2mH

	2kF
2 , and Z= 2mU

	2kF
. Similarly, we define the nor-

malized conductance as �1�2�=
�S1�2�

�N�
=0� �or
�S1�2�

�N��=0� 
. We ne-
glect the difference of effective masses between FS and S in
the present paper since it is effectively renormalized into the
barrier parameter Z.

III. RESULTS

First, we study the normalized tunneling conductance �T
as a function of RSOI at zero voltage �eV=0�. For Z=0 �Fig.
3�a�
 where the AR probability is high, normalized conduc-
tance �T at zero voltage has a maximal value as a function of
RSOI for finite �. This can be understood by decomposing
the normalized tunneling conductance �T into two parts, �1
and �2 �i.e., �T=�1+�2� �Fig. 3�b�
: �1�=�S /�N�
=0�
,

which stems from the injection of wave function with k1, is
reduced by an increase of RSOI but �2�=�S /�N�
=0�
,
which originates from the injection of wave function with k2,
increases by an increase of RSOI as shown in Fig. 3�b�.
These features can be explained by the AR probabilities as
shown in Fig. 4. We find that the difference between �1 and
�2 stems from different dependence of the AR probabilities
on RSOI: A1 is increasing �Fig. 4�a�
 while B1 is reduced by
increasing of RSOI �Fig. 4�c�
. The suppression of B1 domi-
nates the enhancement of A1. Therefore, �1 is reduced by
increasing of RSOI as seen from Eq. �7�. On the other hand,
A2 is reduced �Fig. 4�b�
 and B2 is increasing by RSOI
�Fig. 4�d�
. The enhancement dominates the suppression for
0�
�0.6 but the suppression dominates the enhancement
for 0.6�
�1.0. Therefore, �2 is enhanced by increasing
RSOI �Fig. 3�b�
. For both cases, the same band AR �A1 ,B2�
is increasing. For 
=0, k1 �k2� corresponds to down �up�
spin band in the ferromagnet. In this case, AR within the
same band is forbidden because electrons with the same spin
do not form Cooper pairs in singlet s-wave superconductor.
However, for 
�0, RSOI causes spin mixing and, hence,
the state characterized by k1�k2� consists of up and down spin
states as increasing RSOI. For this reason, the same band AR
becomes possible. On the other hand, the interband AR
�A2 ,B1� is reduced by RSOI because the normalized density
of states N1�2� is reduced �increasing� as shown in Fig. 3�c�.
In this way, we understand that the competition between
these two contributions causes the nonmonotonous depen-
dence of �T on RSOI. This feature is also seen at nonzero
voltage below the gap as shown in Fig. 3�d�.

For Z=1.0 �Fig. 5�, �T has a reentrant shape at zero or
small � �i.e., �=0.1� with increasing RSOI �Fig. 5�b�
. This
result is consistent with the previous work.25 Meanwhile, �T
is monotonically increasing with RSOI at large �
�i.e., �=0.5� �Fig. 5�c�
 at zero voltage. These features can be
understood in a way similar to those at Z=0. From Fig. 6, we
also find that the AR probabilities for Z=1.0 �Fig. 6� are
similar to those for Z=0 except that their magnitudes are
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FIG. 3. �Color online� �a� Normalized tunneling conductance

��T=
�S

�N�
=0� � as a function of 
 at Z=0 and zero voltage with

�=0,0.1,0.5. �b� �1 �injection with k1� and �2 �injection with k2� at
zero voltage for �=0.5.�c� N1 and N2 are the densities of states
normalized by those with �=0 and H=0 for wave numbers k1 and
k2, respectively. �d� Normalized tunneling conductance at nonzero
voltage and zero voltage for �=0.5 with eV /�=0, 0.5,1.0, and 1.5.
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small because of the intermediate barrier strength Z=1.0.
Hence, the behavior of �T in Fig. 5�c� is due to the fact that
the enhanced AR probabilities �A1 ,B2� overcome those re-
duced �A2 ,B1�, resulting in the enhancement of the conduc-
tance. In other words, the contribution from spin mixing
states by RSOI is dominant for Z=1.0.

In order to clarify how the position of the peak of the
conductance changes with Z, we display �T as a function of
RSOI at zero voltage �eV=0� for various Z in Fig. 7. We find
that the nonmonotonous dependence of the normalized tun-
neling conductance �T change into monotonous dependence
by the increase of Z. Therefore, the nonmonotonous depen-
dence of the normalized tunneling conductance �T as a func-
tion of RSOI is seen only for high transport interface �about
Z�0.5�.

Next, we show �T as a function of � at zero voltage. For
Z=0 �Fig. 8�a�
 where AR probability is high, conductance is

reduced by exchange field. For Z=1.0 where AR probability
is intermediate, �T is monotonically decreasing with increas-
ing � as seen in Fig. 8�b�. These features can be explained by
the angular averaged AR probabilities as shown in Figs. 9
and 10. The same band AR �A1 ,B2� is reduced by the in-
crease of exchange field because spin singlet AR is sup-
pressed by the exchange field.32 On the other hand, the in-
terband AR �A2 ,B1� is increased by the increase of exchange
field because the difference between normalized density of
states N1 and N2 are reduced by the increase of exchange
field for ��0.5. Due to the strong suppression of the same
band AR �A1 ,B2�, the normalized conductance is reduced by
the exchange field. After all, these results resemble those
found in ferromagnet/s-wave superconductor junction.31,32

FIG. 5. �Color online� Normalized tunneling conductance as a

function of 
�
�S

�N�
=0� 
 at Z=1.0 with �=0,0.1,0.5 at zero voltag-
e.�a�Normalized tunneling conductance with �=0,0.1,0.5. �b��=0
and 0.1�c��=0.5.
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FIG. 6. �Color online� The angular averaged AR probability at
zero voltage for Z=1.0 with �=0,0.1,0.5. At �=0, A2=0, B1=0.
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IV. CONCLUSIONS

In the present paper, we have studied the tunneling con-
ductance in ferromagnetic semiconductor/insulator/s-wave
superconductor junction with RSOI and exchange field. For
high transparent interface, we showed that normalized con-
ductance �T at zero voltage has a local maximum as a func-
tion of RSOI for finite exchange field. Because RSOI makes
spin polarized states by exchange field mixture of spin up
and down states, Andreev reflection probability shows a non-
monotonic dependence on RSOI in the presence of the ex-
change field, which leads to the nonmonotonic behavior of
the conductance. We also clarified that normalized conduc-
tance has a re-entrant shape at zero or small exchange field
with increasing RSOI but normalized conductance is mono-
tonically increasing by RSOI at large exchange field for in-
termediate transparent interface. It is also found that �T as a
function of exchange field at zero voltage is reduced by ex-
change field. We hope that the results obtained in this paper
are useful for a better understanding of related topic and
experiments.

There are several future works. In the present paper, we
focus on the conventional s-wave superconductor. For un-

conventional superconductor, it is known that the Andreev
bound state is formed at the interface.38 It is also an interest-
ing issue to study ferromagnetic semiconductor/
unconventional superconductor junctions. Beside this prob-
lem, to investigate symmetry of Cooper pair is a challenging
issue. It has been established that odd-frequency pairing am-
plitude is induced in the normal metal/superconductor junc-
tion due to the breakdown of the translational symmetry.39 It
is also challenging to clarify the pairing amplitude in the
ferromagnetic semiconductor region in ferromagnetic
semiconductor/superconductor junctions.40 Also, spin trans-
port in superconducting junctions is an important problem.
Spin conductance in the noncentrosymmetric superconductor
has been studied in Ref. 41. It is very interesting to extend
the present approach by including noncentrosymmetric
superconductors.42–45
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=0,0.1,0.5. At

=0, A1=0, B2=0. At �=1.0, A2=0, B1=0.
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